Порядок включения ноутбука

Содержание

Диагностика и неисправности мультиконтроллера в ноутбуке

Порядок включения ноутбука

В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.

Задачи мультиконтроллера

Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами.

Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп.

 Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера.

 Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука. На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).

В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.  

Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения.

Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать).

В состав мультиконтроллера могут входить контроллеры часов реального времени, жестких дисков, USB, интегрированный аудиоинтерфейс, интерфейс LPC.

Разновидности мультиконтроллеров

Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.

Сильно отличаются только последние, хотя бы методом пайки, они BGA.

На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.

Неисправности мультиконтроллеров и их симптомы

Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.

К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).

В диагностике и ремонте ноутбуков мультиконтроллер имеет ключевое значение, поскольку отсутствие на мультиконтроллере важных сигналов, приходящих с микросхем ноутбука, позволяет выявить неисправные микросхемы и произвести их замену.

 На мультиконтроллер приходит LPC шина, по который идет обмен с южным мостом, и с которой можно считать всем известные POST-коды.

Для этого, кстати, в ремонте часто подпаиваются на прямую к ножкам мультиконтроллера тоненькими проводками и выводят коды на индикаторы. 

Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера.

Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео.

Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).

Диагностика запуска (или отсутствия старта) ноутбука

Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.

Последовательность включения ноутбука

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.

Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора.

Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др.

, а после проверка и тестирование дополнительных устройств.

После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:

  1.  Основной BIOS и EC-BIOS должны быть рабочие.
  2. Мультиконтроллер запитан, работает его кварц и мульт вычитывает содержимое BIOS
  3. ACIN = 3.3 V
  4. LID_SW# = 3.3V (крышка ноутбука открыта)
  5. EC_RST# = 3.3V (мульт снимает RESET с южного моста)
  6. Южный мост снимает сигналы PM_SLP_S3# и SLP_S5#, то есть, на них устанавливается 3.3V
  7. При нажатии кнопки включения сигнал ON/OFTN# падает до нуля и этот же сигнал транслируется в PBTN_OUT#

Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера.

В первых двух случаях восстановить прошивку не представляется сложным. А вот прошить непосредственно мультиконтроллер пока могут не любые программаторы. Да и подключиться к нужным его выводам не всегда просто.

Прошиваемые мультиконтроллеры — NPCE288N/388N, KB9010/9012/9016/9022, IT8585/8586/8587/8985/8987.

Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell.

Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы.

Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:

  • ALL_SYSTEM_PWRGD (68 мульт)
  • SUS_PWRGD (67 мульт)
  • VRM_PWRGD (1 ISL6262) Входящие сигналы указывают на выработку сигнала PowerGood и наличие питания Suspend режима и питания на VRM регуляторе ISL6262. Это значит, мост и процессор запитаны.
  • Сигналы  H_CPURST#_XDP и H_PWRGD_XDP разрешают работу процессора.
  • PWR_SW# — сигнал с кнопки включения
  • CPU_VRON — включения питания на CPU
  • PM_RSMRST# — снимает RESET с моста
  • PM_SUSB# — хаб PCH должен выдать сигналы PM_SUSC# и PM_SUSB# идущие на мульт, а мульт в ответ выдать сигналы SUSC_EC# и SUSB_EC#
  • PM_PWROK — сигнал на хаб, что питание в норме
  • PM_CLKRUN# — сигнал на запуск тактирования
  • PM_PWRBTN# — сигнал на включение южного моста
  • VSUS_ON — сигнал включения дежурного питания на силовых ключах
  • EC_CLK_EN (CLK_EN#) — разрешение тактирования на южный мост

Питание на IT85xx мульты поступает следующее: +3VA_EC, +3VPLL, +3VACC, без них микросхема не запустится.

Последовательность диагностики мультиконтроллера

Рассмотрим схему последовательности включения ноутбука:

Процедура включения материнской платы

Для диагностики в целом, вам нужно рассмотреть две ситуации:

1. Питание не появляется, светодиод питания не горит.

Ищем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений +3VSUS и т.п.

Через форфмирователи +3 V питание поступает на мультик — проверяем это питание на входе. Проверяем выходные сигналы мультика. В некоторых случаях слетает прошивка микроконтроллера.

В этом случае, при наличии входных напряжений, нужные управляющие сигналы с микросхемы контроллера не формируются при нажатии кнопки питания.

2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.

Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов.

Для быстрой диагностики прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост.

Если были артефакты на встроенном видео, то виноват северный мост.

Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.

Вот обобщенный порядок следования сигналов при запуске EC:

исходящий сигнал

CLK_PWRGD с юга приходит на тактовый генератор
-> сигнал PWROK на юг
-> юг отдает процу сигнал H_PWRGD (HardWare PWRGD, все питания в порядке, следующий этап инициализации)
-> юг снимает ресет с севера PLT_RST#
-> юг снимает ресет с PCI шины PCI_RST#
-> север снимает ресет с процессора HCPU_RST#

Источник: https://itprospb.ru/2018/09/diagnostika-i-neispravnosti-multikontrollera-v-noutbuke/

Пошаговая процедура ремонта материнской платы ноутбука

Порядок включения ноутбука

Материнская плата ноутбука не включается. На примере ASUS A6F рассмотрим общий принцип ремонта и поиска неисправностей, которые препятствуют запуску материнской платы и поможет нам в этом POWER On Sequence (такая страничка имеется во многих схемах ноутбуков).

По диаграмме можно отследить всю процедуру запуска материнской платы, начиная с момента включения питания и вплоть до готовности процессора выполнять инструкции BIOS и определить, на каком из этапов у нас происходит ошибка. В той же pdf-ке к материнской плате, можно найти более детальную схему распределения напряжений:

0-1 Входные напряжения питания A/D_DOCK_IN и AC_BAT_SYS

Первым делом следует убедиться в наличии питающего напряжения 19 вольт на входе материнской платы и, желательно, напряжения с АКБ (аккумуляторной батареи). Отсутствие входных напряжений A/D_DOCK_IN и АС_ВАТ_SYS представляется достаточно частой проблемой и проверку следует начинать с блока питания и разъёма на плате.

Если напряжение на участке (разъём — P-mosfet) отсутствует, то необходимо разорвать связь между сигналами A/D_DOCK_IN и AC_BAT_SYS. Если напряжение со стороны A/D_DOCK_IN появилось, то причина неисправности скрывается дальше и надо разбираться с участком (P-mosfet — нагрузка):

Необходимо исключить вариант короткого замыкания (КЗ) по AC_BAT_SYS (19В). Чаще всего, КЗ заканчивается не дальше, чем на силовых транзисторах в цепях, требующих высокой мощности (питание процессора и видеокарты) или на керамических конденсаторах. В ином случае, необходимо проверять все, к чему прикасается AC_BAT_SYS.

Если КЗ отсутствует, то обращаем внимание на контроллер заряда и P-MOS транзисторы, которые являются своеобразным «разводным мостом» между блоком питания и аккумулятором. Контроллер заряда выполняет функцию переключателя входных напряжений. Для понимания процесса работы, обратимся к datasheet, в котором нас интересует минимальные условия работы контроллера заряда:

Как видно по схеме, контроллер MAX8725 управляет транзисторами P3 и P2, тем самым переключая источники питания между БП и аккумулятором — P3 отвечает за блок питания, а P2 за аккумулятор. Необходимо проверить работоспособность этих транзисторов.

Разберем принцип работы контроллера. При отсутствии основного питания, контроллер автоматически закрывает транзистор P3 (управляющий сигнал PDS) тем самым перекрывая доступ блока питания к материнской плате и открывает транзистор P2 (управляющий сигнал PDL). В таком случае плата работает только от аккумулятора.

Если мы подключим блок питания, контроллер должен перекрыть питание от аккумулятора закрывая P2 и открывая P3, обеспечив питание от внешнего блока питания и зарядку аккумулятора.

При диагностике входного напряжения от сети мы не используем аккумулятор и проверяем только сигнал PDS. В нормальном режиме он должен “подтягиваться” к земле, тем самым открывая P-MOS и пропуская 19В на плату.

Если контроллер неправильно управляет транзистором P3, то необходимо проверить запитан ли сам контроллер. Затем проверяем основные сигналы DCIN, ACIN, ACOK, PDS.

При их отсутствии, меняем контроллер и, на всякий случай, P-MOS транзисторы.

https://www.youtube.com/watch?v=3UWjuTz6VUg

Если проблем с входными напряжениями нет, но плата все равно не работает, переходим к следующему шагу.

1-2 Питание EC контроллера

Embedded Contoller (EC) управляет материнской платой ноутбука, а именно включением/выключением, обработкой ACPI-событий и режимом зарядки аккумулятора. Также эту микросхему ещё называют SMC (System Management Controller) или MIO (Multi Input Output).

Контакты микросхемы EC контроллера программируются под конкретную платформу, а сама программа, как правило, хранится в BIOS или на отдельной FLASH микросхеме.

Вернувшись к схеме запуска материнской платы, первым пунктом видим напряжение +3VA_EC, которое является основным питанием EC контроллера и микросхемы BIOS. Данное напряжение формирует линейный стабилизатор MIC5236YM:

Благодаря присутствию сигнала AC_BAT_SYS, микросхема должна выдать напряжение +3VAO, которое с помощью диагностических джамперов преобразуется в +3VA и +3VA_EC.

+3VA и +3VA_EC питают Embedded контроллер и BIOS, при этом запускается основная логика платы, которая отрабатывается внутри EC контроллера. Основными причинами отсутствия +3VA и +3VA_EC могут служить короткое замыкание внутри компонентов (ЕС, BIOS и т.д.), либо повреждение линейного стабилизатора или его обвязки.

3 Дежурные напряжения (+3VSUS, +5VSUS, +12VSUS)

После того как был запитан EC и он считал свою прошивку, контроллер выдает разрешающий сигнал VSUS_ON для подачи дежурных напряжений (см. пункт 3 последовательности запуска). Этот сигнал поступает на импульсную систему питания во главе которой стоит микросхема TPS51020:

Как видно на схеме, нас интересуют напряжения, отмеченные на схеме зеленым цветом +5VO, +5VSUS, +3VO, +3VSUS. Для того, что бы эти напряжения появились на плате необходимо что бы микросхема была запитана 19В (AC_BAT_SYS) и на входы 9, 10 приходили разрешающие сигналы ENBL1, и ENBL2.

Разрешающие сигналы на платформе A6F формируются из сигналов FORCE_OFF# и VSUS_ON.

В первую очередь нужно обратить внимание на VSUS_ON который выдается EC контроллером, а сигнал FORCE_OFF# рассмотрим чуть позже. Отсутствие сигнала VSUS_ON говорит о том, что либо повреждена прошивка (хранящаяся в BIOS), либо сам EC контроллер.

Если же напряжение ENBL присутствует на плате и TPS51020 запитан, то значит TPS51020 должен формировать +5VO, +5VSUS, +3VO, +3VSUS (проверяется мультиметром на соответствующих контрольных точках).

Если напряжения +5VO, +3VO не формируются, проверяем эти линии на КЗ или заниженное сопротивление. В случае обнаружения КЗ, разрываем цепь и выясняем, каким компонентом оно вызвано.

При отсутствии или после устранения КЗ, снова проверяем напряжения и если их нет, то меняем сам контроллер вместе с транзисторами которыми он управляет.

4 Сигнал VSUS_GD#

На этом этапе контроллер дежурных напряжений сообщает EC контроллеру о том, что дежурные питания в норме. Проблем тут быть не должно.

5 Сигнал RSMRST#

На этом этапе EC контроллер выдает сигнал готовности системы к включению — RSMRST# (resume and reset signal output). Этот сигнал проходит непосредственно между EC и южным мостом. Причиной его отсутствия может быть сам контроллер, южный мост или прошивка EC.

Прежде чем искать аппаратные проблемы, сначала прошейте BIOS. Если результата нет, отпаиваем и поднимаем соответствующую сигналу RSMRST# 105 ножку EC, и проверяем выход сигнала на EC контроллера. Если сигнал все равно не выходит, то меняем контроллер.

Если сигнал выходит, но до южного моста не доходит, то проверяем южный мост и часовой кварц, в худшем случае меняем сам южный мост.

6 Кнопка включения (сигнал PWRSW#_EC)

На этом этапе необходимо проверить прохождение сигнала от кнопки включения до EC контроллера. Для этого меряем напряжение на кнопке и проверяем ее функциональность, если после нажатия напряжение не падает, то проблема в кнопке. Так же можно закоротить этот сигнал с землей и проверить включение.

7 Сигнал включения (сигнал PM_PWRBTN#)

После того как сигнал от кнопки включения попадает на EC, тот в свою очередь передает этот сигнал в виде PM_PWRBTN# на южный мост.

Если южный мост его успешно принял, то следующим этапом является выдача ответа в виде двух сигналов PM_SUSC#, PM_SUSB#, которые, в свою очередь, являются разрешением южного моста EC контроллеру включать основные напряжения платы (если южный мост никак не реагирует на сигнал PM_PWRBTN#, то проблема скрывается в нем).

8-9 Основные напряжения

Каким образом EC контроллер обрабатывает ACPI-события? В предыдущем пункте было сказано, что южный мост отправляет на EC два сигнала PM_SUSC#, PM_SUSB#. Эти сигналы еще называют SLP_S3# и SLP_S4# (отмечено красным блоком на след схеме):

Рассмотрим более подробно ACPI состояния:

  • S0 — Working Status
  • S1 — POS (Power on Suspend)
  • S3 — STR (Suspend to RAM), Memory Working
  • S4 — STD (Suspend to Disk), H.D.D. Working
  • S5 — Soft Off

Так вот, состояние этих сигналов отвечает за ACPI состояние питания на материнской плате:

Мы будем рассматривать случай, когда оба сигнала SLP_S3# и SLP_S4# , соответственно сигналы SUSC_EC#, SUSB_EC# в состоянии HI. То есть, материнская плата находится в режиме S0 (полностью работает, все напряжения присутствуют).

Как видно из последовательности запуска, при появлении сигналов SUSC_EC#, SUSB_EC#, на плате должны появиться следующие напряжения:

  • SUSC_EC#, отвечает за напряжения: +1.8V, +1.5V, +2.5V, +3V, +5V, +1V;
  • SUSB_EC#, отвечает за напряжения: +0.9VS, +1.5VS, +2.5VS, +3VS, +5VS, +12VS

Если хоть одного из этих напряжений не будет, плата не запустится, по этому, проверяем каждую систему питания, начиная от +1.8V, заканчивая +12VS.

Сигналы SUSC_EC#, SUSB_EC#, поступают как на ENABLE отдельных импульсных систем питания (например 1.8V DUAL – питание памяти), так и на целые каскады напряжений преобразовывая уже существующие ранее дежурные напряжения в основные:

10 Питание процессора

Проверяем разрешающий сигнал VRON, который с определенной задержкой поступает на контроллер питания CPU сразу после выдачи сигналов SUSC_EC#, SUSB_EC#.

Далее на CPU должно появится напряжение, если такого не произошло, разбираемся с контроллером питания и его обвязкой. Причин неработоспособности системы питания CPU достаточно много. Основная из них – это выход из строя самого контроллера.

Необходимо проверить минимальные условия работы, для этого не помешает даташит контроллера и сама схема.

11 Включение тактового генератора

После того, как на плате появилось напряжениеCPU, контроллер должен выдать 2 сигнала, это IMVPOK# (Intel Mobile Voltage Positioning – OK) и CLK_EN#. Сигнал IMVPOK# уведомляет EC о том, что питание процессора в норме, а сигнал CLK_EN# включает тактовую генерацию основных логических узлов.

Что бы проверить работоспособность клокера ICS954310 необходимо измерить частоту хотя бы на одном из выводов на котором тактовая частота наименьшая, или такая, которую словит ваш осциллограф. Выберем для этого 12 ножку ICS954310, которая отвечает за выдачу FSLA/USB_48MHz.

Если нет генерации, то проверяем минимальные условия для работы ICS954310. Это кварц 14Mhz и питание 3VS и 3VS_CLK.

12 Завершающий сигнал готовности питания (PWROK)

Если этот сигнал присутствует, и логика EC исправна, то это значит, что все напряжения на плате должны быть включены.

13 PLT_RST#, H_PWRGD

PLT_RST# – сигнал reset для северного моста, H_PWRGD сообщает процессору о том, что питание северного моста в норме. Если возникли проблемы с этими сигналами, то проверяем работоспособность северного и южного моста.

Проверка мостов — тема, довольно обширная. Вкратце, можно сказать, что необходимо проверять сопротивления по всем линиям питания этих мостов и при отклонении от нормы мосты нужно менять.

В принципе, обычной диодной прозвонкой сигнальных линий можно определить неисправный мост, но так как микросхемы выполнены в корпусе BGA, добраться до их выводов практически невозможно.

Не все выводы приходят на элементы, которые легко достать щупом тестера, поэтому используют специальные вспомогательные диагностические платы (например есть диагностические платы для проверки северного моста и каналов памяти).

14 Завершающий этап

H_CPURST# – сигнал reset, выдаваемый северным мостом CPU. После завершения последовательности начинается выполнение инструкций BIOS.

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Как продлить время автономной работы iPhone на iOS 7Переустановка Mac OS X на ноутбукеRUFUS. Создаем загрузочную флешку с FreeDOS для прошивки BIOSВидимо всё… сколько циклов перезарядки реально выдерживает батарея MacBookПроброс портов на MikroTikОставляете смартфон на зарядке на всю ночь? Тогда эта статья для вас.

Источник: https://mdex-nn.ru/page/obshhij-princip-remonta-motherboard-notebook.html

Формирование напряжений и сигналов запуска ноутбука

Порядок включения ноутбука

Форма входа

Друзья сайта

Сейчас на сайте
puma-968, serg-161, RACHIDVRSWAKAN, osamahassan, Alexey_D, and11, toyliboy2020, apolyanskiy, sla70, abzik33, uraboger, kasamiko, ФАРТ, Электрик-ррр, dronX5, kotik, butcher99, ZMikk, Destroy63582, Михайлов, LSergey76, anton_k66, серж26, kuap
Партнёры проекта
Приветствую Вас, Гость · RSS02.01.2021, 07:12:17
» Статьи » Статьи » Компьютеры и Периферия
Формирование напряжений и сигналов запуска ноутбука Предисловие: Посмотрев видео на просторе интернета про формированию сигналов и напряжению ноутбука, на примере платы LA-B102P, решил написать статью, в которой много чего узнает интересующийся читатель. И так начнем с самого основного на мой взгляд , те разновидность напряжений и сигналов. Они делятся на две основные категории, то что образуется до нажатия кнопки, и то что после нажатия кнопки питания ноутбука. Рассмотрим по шагам: 1) 1- 11 шаги Always on (перевод Постоянно включен Напряжения которое появляется до включения кнопки питания) 2) 12-35 шаги After Power on Switch (перевод После включения питания) напряжения с сигналами которые появляются после нажатия кнопки включения ). Рассмотрим плату ноутбука и найдем основное входное напряжение так называемое Vin рис1 оно и будет у нас первым шагом в нашей группе Always on, это напряжение ка вы поняли подается с блока питание ноутбука. Следующим напряжением является в нашей под категории выше уже сказанной вторым шагом BATT+. Это напряжение сформированное схемой заряда на микросхеме PU301 и ключей PQ310 и PQ312, для зарядки аккумулятора, ниже показанное на рис1. рис 1 Следующий третий шаг напряжение сформированное 2 ключами PQ301, PQ302, и Pq303 в зависимости от чего питается ноутбук, B+ это основное высокое напряжение с него формируются все остальные напряжения, которое подается на шим преобразователи основных питателей. рис 2 Так рассматриваем дальше, и на четвертом шаге у нас напряжение +RTCVCC, сформированное с помощью JBATT1, PR105, PD101, R711, те с помощью часовой батарейки. рис 3 Следующий пятый шаг +3LVP это напряжение сформировано с помощью PU401, вывод (5), название вывода LDO (low drop out перевод малое падение напряжения те линейный стабилизатор с малым выходным падением напряжения). Как оно сформировалось: после появление напряжения B+ прошедшее через PL401 появляется на выводе 8 PU401, тем самым через внутренний линейный стабилизатор уже формируется напряжение +3VLP(я предполагаю, что сигнал+3VLP производители сократили из таких слов +3V LDO POWER ). Это напряжение поступает на вывод 111 показан на рис 4 с названием EC_VDD0 микросхемы U28 . Она является (Embedded Controller-встроенный контроллер ) дальше EC отвечающая за запуск ноутбука , периферию и мониторинг. EC при подаче напряжения запускает свою внутреннюю прошивку и формирует запускающие сигналы, один из них, те шестой шаг EC_ON через резистивный делитель PR406 и PR409 формирует сигнал 3V5V_EN для запуска PU401 и Pu402, которые формируют седьмой и восьмой шаги это +3VALW +5VALW(я предполагаю, что производители сократили название это +3V Always +5V Always ) рис 4 Дальше в формирование последующих шагов напряжений вступает 3V/5VALW_PG, сформированное с помощью PU401 вывод (2). Это напряжение запускает шаг девять ШИМ контроллер PU602 через резистор PR607. На выводе 10(LX)PU602 через катушку PL603 и перемычку PJ603 формируется +1.0VALW. Также в шаге десять тоже участвует 3V/5VALW_PG запускающее ШИМ контроллер PU601через резистор PR604. На выводе 3 (LX)PU601 через катушку PL601 и перемычку PJ602 формируется +1.8VALW. Все это показано на рис 5. рис 5 Следующий одиннадцатый шаг ON/OFF# это вывод 114 EC и вывод 4 JPWRB1.Сигнал приходящий от кнопки включения питания ноутбука с активным низким уровнем приходит на эти выводы рис 6. рис 6 Вот мы и закончил первую группу напряжений которая называется как выше было сказано Always on. А теперь в таблице ниже повторим их: Переходим к второй подгруппе напряжений как сказано выше After Power on Switch, это те напряжения которые появляются после нажатия кнопки питания, шаг 12 в общем списке и первый во второй подгруппе After Power on Switch напряжений, сигнал EC_RSMRST# (Embedded Controller resume reset) вывод 100 EC. Активный сигнал 0 что свидетельствует значок #, когда он равен 0 то PMC (Power Management Controller-контроллер питания) процессора сброшен. При нажатии на кнопку питания ноутбука EC_RSMRST# переходит в режим 1 равный 3.3v, переводит PMC процессора в рабочий режим. Все это показано на рис. 7. рис. 7 Следующий сигнал 13 в общем списке и второй в подгруппе After Power on Switch напряжений PBTN_OUT# (power booton out-выход сигнализирующий о нажатии кнопки питания ) активный уровень 0. При нажатии кнопки питания переходит в 0 и возвращается в 1. Поступает из вывода 122 на вывод процессора J26PMC_PWRBTN# через R1058 0 Om.Как показано на рис. 8рис. 8 Продолжаем, следующий сигналы 14 и 15 в общем списке а также третий и четвертый в подгруппе After Power on Switch напряжений PMC_SLP_S4#(Power Management Controller sleep state 4выход контроллера питания в ACPI условие 4 )и PMC_SLP_S3#(Power Management Controller sleep state 4выход контроллера питания в ACPI условие 3 ) активные уровни 1 для рабочего состояния работы ноутбука.рис. 9рис. 9 Давайте вспомним ACPI-(Advanced Configuration and Power Interface- усовершенствованный интерфейс управления конфигурацией и питанием). Имеет глобальные состояния: G0(S0) (Working) — нормальная работа, (полностью работает, все напряжения присутствуют). S1 («Power on Suspend» (POS) в BIOS) — состояние, при котором все процессорные кэши сброшены и процессоры прекратили выполнение инструкций. Однако питание процессоров и оперативной памяти поддерживается; устройства, которые не обозначили, что они должны оставаться включенными, могут быть отключены; S2 — более глубокое состояние сна, чем S1, когда центральный процессор отключен, обычно, однако, не используемое; S3 («Suspend to RAM» (STR) в BIOS, «Ждущий режим» («Standby») в версиях Windows вплоть до Windows XP и в некоторых вариациях Linux, «Sleep» в Windows Vista и Mac OS X, хотя в спецификациях ACPI упоминается только как S3 и Sleep) — в этом состоянии на оперативную память (ОЗУ) продолжает подаваться питание, и она остаётся практически единственным компонентом, потребляющим энергию. Так как состояние операционной системы и всех приложений, открытых документов и т. д. хранится в оперативной памяти, пользователь может возобновить работу точно на том месте, где он её оставил — состояние оперативной памяти при возвращении из S3 то же, что и до входа в этот режим. (В спецификации указано, что S3 довольно похож на S2, только чуть больше компонентов отключаются в S3.) S3 имеет два преимущества над S4: компьютер быстрее возвращается в рабочее состояние, и, второе, если запущенная программа (открытые документы и т. д.) содержит конфиденциальную информацию, то эта информация не будет принудительно записана на диск. S4 («Спящий режим» (Hibernation) в Windows, «Safe Sleep» в Mac OS X, также известен как «Suspend to disk», хотя спецификация ACPI упоминает только термин S4) — в этом состоянии всё содержимое оперативной памяти сохраняется в энергонезависимой памяти, такой, как жёсткий диск: состояние операционной системы, всех приложений, открытых документов и т. д. Это означает, что после возвращения из S4 пользователь может возобновить работу с места, где она была прекращена, аналогично режиму S3. Различие между S4 и S3, кроме дополнительного времени на перемещение содержимого оперативной памяти на диск и назад, — в том, что перебои с питанием компьютера в S3 приведут к потере всех данных в оперативной памяти, включая все не сохранённые документы, в то время как компьютер в S4 этому не подвержен. S4 весьма отличается от других состояний S и сильнее S1-S3 напоминает G2 Soft Off и G3 Mechanical Off. Система, находящаяся в S4, может быть также переведена в G3 Mechanical Off (Механическое выключение) и все ещё оставаться в S4, сохраняя информацию о состоянии так, что можно восстановить операционное состояние после подачи питания. G2 (S5) (soft-off) — мягкое (программное) выключение; система полностью остановлена, но под напряжением, готова включиться в любой момент. Влияние условий на состояния показано на рис 10.рис 10 Если кратко с выше сказанного и условий таблицы то ,когда оба сигнала SLP_S3# и SLP_S4# ,в состоянии HI. то плата ноутбука в рабочем состоянии S0 (полностью работает, все напряжения присутствуют). Также в некоторых схемах вместо PMC_SLP_S3# и PMC_SLP_S4# может быть указано PM_SUSB#, PM_SUSC# те: PMC_SLP_S3#=PM_SUSB#, PMC_SLP_S4#=PM_SUSC#PM_SUSC# (Power Management Suspend Plane C Control) PM_SUSB# (Power Management Suspend Plane B Control ) Давайте разберемся откуда эти сокращения, все это идет с прошлого, когда использовалась для построения схем архитектура южного и северного мостов, те чипсет (набор микросхем) состоял из Northbri dge северного моста который находился ближе к процессору (как на земном шарике в верху север в низу юг ) и Southbridg южный мост, тот который отвечал за периферию. Все это показано ниже на рис 10. Далее если мы возьмем дата шит любого южного моста к примеру VT8237 и найдем таблицу описания выводов, то найдем следующее: Что обозначает: SUSB#Power Management Suspend Plane B Control-power management STR and STD suspend states. STR -Suspend to RAM STD-Suspend to DISk. Если посмотреть выше в статье где говорилось о состояния питания то мы увидим S3 «Suspend to RAM» SUSC#Power Management Suspend Plane C Control-power management STD suspend state S4-«Suspend to disk». Вот поэтому в схемах используют и те и другие обозначения. Вот так все просто если разобраться . рис 10Пишу материал по мере свободного времени не забывайте оставлять коментарии

Всего : |

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Источник: https://remont-aud.net/publ/stati/kompjutery_i_perifirija/formirovanie_naprjazhenij_noutbuka_na_primere_platy_la_b102p/31-1-0-393

Как работать с BIOS и UEFI компьютера или ноутбука

Порядок включения ноутбука

Большинство пользователей компьютеров и ноутбуков знают о существовании BIOS или UEFI, но заходить в них и менять какие-либо настройки им просто нет нужды. Но рано или поздно может возникнуть ситуация, когда это придется сделать. Давайте разберемся, как входить в BIOS и какие его параметры нужно уметь менять начинающим пользователям.

Для простоты чтения в блоге под BIOS иногда будет подразумеваться и UEFI.

Первая проблема, с которой можно столкнуться — это сам вход в BIOS. На большинстве стационарных компьютеров это сделать легко, нажав кнопку Delete при включении.

Иногда пользователи сталкиваются с тем, что не успевают нажать клавишу вовремя.

Чтобы гарантированно войти в BIOS, нужно нажимать кнопку Delete циклически, несколько раз в секунду, пока компьютер включается.

А вот с ноутбуками ситуация уже сложнее. По нажатию на кнопку Delete не всякий ноутбук войдет в BIOS, обычно надо нажимать F2.

Некоторые модели могут потребовать нажатия F1, F3 или F10. А старые или редкие модели ноутбуков Dell или Lenovo иногда требуют совсем редкие клавиатурные сочетания — Ctrl+Alt+Enter, Ctrl+Alt+F3 или Ctrl+Alt+Ins.

Многие клавиатуры ноутбуков не имеют отдельных F-кнопок, поэтому нужно будет нажимать дополнительную кнопку Fn. Например, Fn+F2.

Модели SONY VAIO имеют специальную кнопку ASSIST, с помощью которой можно войти в BIOS.

Иногда подобная кнопка имеется и на ноутбуках Lenovo.

Обычно подсказка по кнопкам будет видна при загрузке, внизу экрана, но очень непродолжительное время.

Если вам не удается зайти в BIOS на ноутбуке по сочетанию Fn+F2, то начнется загрузка операционной системы, которая в случае устаревшего железа может занять одну-две минуты, и ждать возможности перезагрузки ноутбука бывает очень утомительно.

Поэтому проще поступать так: нажимаете Fn+F2 и, если вход в BIOS не произошел, быстро нажимаете сочетания кнопок Ctrl+Alt+Del и пробуете еще раз или другое сочетание кнопок. Лучше заранее почитать руководство по эксплуатации ноутбука, если оно имеется, или скачать его из интернета.

Однако бывают ситуации, когда и интернета под рукой нет, а ноутбук очень экзотический, и подсказка по сочетаниям клавиш появляется на долю секунды. В таком случае выручит смартфон — включайте запись видео экрана ноутбука при загрузке и потом рассмотрите подсказку по клавишам на видео, поставленном на паузу.

Вообще, смартфон часто выручает и опытных пользователей при работе с BIOS, ведь им очень удобно сфотографировать настройки, которые трудно запомнить.

Итак, мы вошли в BIOS, и нас встречает его главный экран, который выглядит по-разному в зависимости от производителя и возраста материнской платы компьютера или ноутбука.

Один из самых старых видов BIOS — это AMI BIOS от разработчика American Megatrends inc. Он начал массово распространяться еще в 90-х, но встретить его можно и сейчас на технике конца нулевых годов.

Более массовый и знакомый многим BIOS от Award имеет привычный синий экран с желтыми символами.

Phoenix-Award BIOS более похож по цветам на AMI BIOS и часто используется в ноутбуках.

Обычные виды BIOS уже давно не отвечали новым требованиям рынка ПК, имели мало возможностей и постепенно их заменяет интерфейс UEFI (Unified Extensible Firmware Interface).

Если ваш компьютер куплен в 2010-х годах, то скорее всего на нем уже стоит UEFI.
Интерфейс UEFI является графическим, имеет поддержку мыши и нескольких языков. По сути, это небольшая операционная система с множеством функций, которых не было в BIOS.

Итак, мы разобрались с тем, как войти в BIOS и с тем, как он будет выглядеть на большинстве систем. Теперь давайте рассмотрим функции, изменять которые может понадобиться начинающему пользователю компьютера или ноутбука.

Первое и самое частое, что приходится делать пользователям — это менять устройство, с которого будет загружаться компьютер. Например, нужно выбрать флешку с которой будет устанавливаться Windows. Или при покупке нового SSD нужно установить загрузку с него, а не со старого HDD.

Однократно выбрать устройство загрузки при установке Windows будет удобнее горячей клавишей. В таблице в начале блога есть списки кнопок, которыми можно зайти в «Меню загрузки» (Boot menu) при старте компьютера. Обычно это F8, F11 или F12.

Но не только для установки Windows может потребоваться загрузка с флеш-накопителя. Иногда компьютер настолько плохо работает из-за заражения вирусами, что лечение от них в операционной системе невозможно.

В таком случае на помощь придет загрузочная флешка с антивирусом. Создать такую флешку предлагают все ведущие разработчики антивирусных программ, например, Kaspersky или Dr.Web.

Если же вы добавили новый накопитель в компьютер, и нужно, чтобы он загружался с него, придется зайти в BIOS и изменить настройки.

Покажем это на примере компьютера с материнской платой MSI B450-A PRO MAX с графическим интерфейсом. На других моделях плат настройки будут похожими.

При входе в UEFI MSI B450-A PRO MAX мы попадаем в так называемое EZ Mode меню, где настройки рассчитаны на начинающего пользователя.

Вкладка Storage покажет, какие диски и к каким SATA-портам материнской платы подключены.

Панель Boot Priority показывает иконки накопителей, порядок загрузки которых можно менять перетаскиванием.

Однако у меня эта панель показывает только один из трех дисков, поэтому мне придется переключиться в Advanced Mode нажатием кнопки F7 или выбрать его мышью в верхней части экрана.

Advanced Mode предлагает уже заметно больше настроек. И что особенно удобно, они логически выстроены. Я перехожу в раздел Settings и в подраздел Boot.

Далее в Hard Disk Drive BBS Priorities.

И в строке Boot Option #1 выбираю SSD, с которого будет загружаться Windows.

Все чаще в компьютеры ставят качественную дискретную звуковую карту, при этом встроенную надо отключить. Делается это просто, заходим в меню Settings и подраздел Advanced\Integrated Peripherals.

HD Audio Controller переводим в режим Disabled.

Многим пользователям будет удобно настроить включение компьютера при наличии электропитания в его розетке. Это удобно тем, что, включив удлинитель питания кнопкой, у вас автоматически включится ПК вместе с монитором и периферией. И кнопку Power на системном блоке нажимать не придется.

Для этого идем в раздел Settings и подраздел Advanced. Далее — в подраздел Power Management Setup.

И параметр Restore after AC Power Loss переводим в значение Power On.

Если вы нуждаетесь в более надежной защите от проникновения посторонних в компьютер, чем просто пароль при входе в Windows, то желательно установить пароль и в BIOS.

Его можно установить в разделе Settings и подразделе Security.

Пароль нужно ввести в поле Administrator Password. Постарайтесь не забыть пароль, иначе придется делать сброс настроек BIOS.

Бывают такие случаи, когда охлаждение компьютера избыточно и слишком шумно. Исправить это можно в настройках UEFI, в подразделе Fan Info.

В моем случае в эти настройки удобно попасть из EZ Mode.

MSI B450-A PRO MAX позволяет задать кривую оборотов вентилятора с PWM в зависимости от температуры выбранных компонентов: процессора, чипсета или системы питания.

А обычные вентиляторы можно настроить, отрегулировав подаваемое напряжение. Не стоит сразу сильно снижать обороты вентиляторов. Снизьте их на 20 % и проверьте в работе компьютера под нагрузкой температуры и уровень шума. Если температуры в порядке, а шум еще присутствует, снизьте еще. Однако при снижении питания или оборотов вентилятора на 50 % и ниже, он может просто не запуститься.

Мы с вами рассмотрели наиболее часто встречающиеся причины, по которым начинающим пользователям придется воспользоваться BIOS или UEFI. Не стоит бояться применять эти настройки, ничего критического в компьютере или ноутбуке они не затрагивают.

А по мере накопления опыта, вы сможете настраивать и более серьезные вещи в BIOS, например, увеличить производительность компьютера с помощью разгона. Или снизить его нагрев и уровень потребления электричества с помощью андервольта. Но эти обширные темы уже для отдельных блогов.

Источник: https://club.dns-shop.ru/blog/t-93-programmnoe-obespechenie/29344-kak-rabotat-s-bios-i-uefi-komputera-ili-noutbuka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.